2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。
一、夏普莱斯:两次获得诺贝尔化学奖
2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。
今年,他第二次获奖的「点击化学」,同样与药物合成有关。
1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。
过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。
虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。
虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。
有机催化是一个复杂的过程,涉及到诸多的步骤。
任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。
不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。
为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。
点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。
点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。
夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。
大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。
大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。
大自然的一些催化过程,人类几乎是不可能完成的。
一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。
夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?
大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。
在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。
其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。
诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:
夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。
他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。
「点击化学」的工作,建立在严格的实验标准上:
反应必须是模块化,应用范围广泛
具有非常高的产量
仅生成无害的副产品
反应有很强的立体选择性
反应条件简单(理想情况下,应该对氧气和水不敏感)
原料和试剂易于获得
不使用溶剂或在良性溶剂中进行(最好是水),且容易移除
可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定
反应需高热力学驱动力(>84kJ/mol)
符合原子经济
夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。
他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。
二、梅尔达尔:筛选可用药物
夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。
他就是莫滕·梅尔达尔。
梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。
为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。
他日积月累地不断筛选,意图筛选出可用的药物。
在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。
三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。
2002年,梅尔达尔发表了相关论文。
夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。
三、贝尔托齐西:把点击化学运用在人体内
不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。
虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。
诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。
她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。
这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。
卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。
20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。
然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。
当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。
后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。
由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。
经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。
巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。
虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。
就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。
她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。
大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。
2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。
贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。
在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。
目前该药物正在晚期癌症病人身上进行临床试验。
不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。
「 点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)
参考
https://www.nobelprize.org/prizes/chemistry/2001/press-release/
Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.
Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.
Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.
https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf
https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf
Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.
“东方旋律”奏响欧洲大陆 以乐为媒描绘中国故事******
中新网北京11月30日电(刘越)足迹遍及布鲁塞尔、卢森堡、巴黎等地,持续将近一个月……由中国对外文化交流协会主办的“东方旋律”音乐会日前落幕。中国音乐与西方经典珠联璧合,现代韵律与传统典雅交相辉映,尽显文明间的相融相通。余音绕梁之间,中欧人文交流也奏响新的篇章。
图片说明:比利时“艺韵”女子弦乐四重奏。中国对外文化交流协会供图中西艺术文化互鉴 欧洲名家奏响“东方旋律”
在《东方旋律》钢琴协奏曲流畅、雄浑的节奏中,10月29日,“东方旋律”音乐会在美丽的布鲁塞尔拉开帷幕。比利时音乐家尚·马龙、左汉与比利时“艺韵”女子弦乐四重奏组合为观众带来了荟萃中外名曲的精彩演出。
此后,在欧洲多地举办的一系列别开生面的“东方旋律”音乐会上,《康定情歌》、《月亮代表我的心》等耳熟能详的中国乐曲与《爱的礼赞》、《G大调弦乐小夜曲》等西方经典轮番上演,欧洲音乐家用中国传统乐器扬琴创作演奏的《梦想飞行》《雪河》《永恒》等乐曲,带观众充分领略不同音乐文化的独特魅力。
尚·马龙是比利时钢琴演奏家、作曲家,他20年来积极参与中欧文化交流。关心中国发展的他,先后创作了上海世博会比利时馆主题曲《我们的歌》和《黎明的编钟声》《樱花珞》等音乐作品,参与《当爵士遇到昆曲》《让世界听见中华好民歌》等节目录制,演出足迹遍及北京、上海、长春、深圳、贵州等地。
图片说明:比利时音乐家尚·马龙。中国对外文化交流协会供图他倾情演绎了《东方旋律》《斯塔沃洛狂欢节》《茉莉花》《康定情歌》等乐曲,并分享了《东方旋律》的创作感想。在他看来,《东方旋律》创作于他在中国举办第一场音乐会20周年之际,是致敬中国发展伟大成就的作品,表达了对中国更加美好未来的期望和祝愿。相信美妙的音乐能够凝聚心灵,沟通彼此,激发热情。希望比中文化交流更加频繁且富有成效。
左汉则是在青岛居住期间接触到中国传统音乐的,自那起就对中国音乐着迷。他曾多次与中国音乐家合作,为中国传统乐器扬琴、笙、琵琶和笛子等创编乐曲。演奏中,他在钢琴和扬琴两种截然不同的中西方乐器间完美自如切换,倾情演绎了以中国神话“嫦娥奔月”为灵感创作的《月亮梦想家》《飞行梦想》《月亮愿望》系列作品,令人耳目一新。
图片说明:比利时音乐家左汉。中国对外文化交流协会供图深化中欧人文交流 “东方旋律”描绘中国故事
“东方旋律”以系列音乐会为媒,让欧洲民众加深了对中华文化、中国发展和构建人类命运共同体的天下情怀的认知和了解。一位在布鲁塞尔观看了演出的欧盟官员表示,在纷繁复杂的国际环境下,沟通和对话弥足珍贵,只有相互理解才能让世界变得更加美好。这场音乐会不仅展现了“东方旋律”,也让西方人看到了中国人民蓬勃向上的精神风貌。
音乐是文化的重要组成部分,是全人类共同的语言。聆听者可以超越国别、种族、文化差异进行最质朴的心灵交流,产生情感共鸣。正如比利时国家电视台IXPE频道《Shinyusu》栏目主持人纳迪尔·阿杰奈所说:“这不仅是一场流行和古典的交流,也是一场中西文化的碰撞”。
近一个月以来,“东方旋律”音乐会在欧洲几度巡演,各方积极评价如潮。11月17日,“东方旋律”落地巴黎,法国新里昂中法大学副主席阿兰·拉巴特认为,这是一场非常有意义的活动,“今晚我们听到了西方人演奏中国的音乐,完美呈现了中欧之间的文化交流。”
“东方旋律”音乐会欧洲巡演在马耳他、卢森堡等地奏响,反响依旧热烈。在马耳他国家创意艺术中心音乐厅开启的演出,令圣玛格丽特中学“中国角”师生激动不已。“中国角”创始人马丁·阿佐帕迪老师说,非常感谢音乐会为学生们提供这次宝贵的学习机会,让马耳他青少年能近距离感受中国音乐与中国文化的魅力,通过音乐艺术鉴赏增进对中国文化和多元文化的了解。
中国驻法国大使卢沙野、驻比利时大使曹忠明、驻卢森堡大使华宁、驻马耳他使馆首席馆员彭熠军参赞,以及比利时埃诺省省长勒克莱、比中经贸委员会主席德威特,法国巴黎七区第一副区长若西亚娜·高德、团结进步党主席雅克·舍米纳德,马耳他国家文物局局长马里奥·库塔亚、马萨斯卡拉市市长马里奥·卡莱亚、马中友协主席雷诺·卡莱亚,卢森堡副议长马尔斯·迪·巴托洛梅奥等来自比利时、法国、马耳他、卢森堡的各界嘉宾,出席了“东方旋律”系列音乐会。(完)
(文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |